Главная  
  • Программы  
  • Методички  
  • Рефераты  
  • Дипломы  
  • Разное  
  • Фото  
  • Контакты  
  • Карта сайта  

  • Я:
    Найти:
    Возраст:
    -

    Методическое пособие "Компьютерное моделирование"

    Внимание!!! В выложенном на сайте тексте могут быть ошибки,

    СКАЧАЙТЕ оригинальную версию методички одним файлом в формате .doc (MS Word)

    HashFlare

    5.4. Свойство однородных марковских цепей
    Простейшим видом марковской цепи является однородная марковская цепь, в которой вероятности перехода из состояния в состояние Pij не зависят от времени, а следовательно марковская цепь для любых сечений случайного процесса представляется одним и тем же G, одной и той же таблицей T.

    Некоторые определения, которые позволят сформулировать свойства однородных марковских цепей /для рассчета и анализа в процессах /.

    ОПРЕДЕЛЕНИЕ 1 Если в одной марковской цепи можно из любого состояния Zi перейти в любое другое состояние за как угодно большой интервал времени, то такая марковская цепь называется неприводимой. В графе такой марковской цепи будут отсутствовать "висячие" вершины /в которые входят стрелки, но не выходят/.

    ОПРЕДЕЛЕНИЕ 2 Состояние однородной марковской цепи Zj называется возвратным, если вероятность вернуться в него по истечении некоторого большого времени равна 1.

    ОПРЕДЕЛЕНИЕ 3 Средним временем возвращения в некоторое возвратное состояние Zj называется среднее время между многими очередными возвращениями в это состояние. Если имеет место цикличность, то тогда речь идет о стахастическом процессе, а можно использовать более простые средства анализа.

    ОПРЕДЕЛЕНИЕ 4 Если все состояния однородной марковской цепи апериодичные, то такая марковская цепь называется апериодической, и в ней не развиваются различные циклические процессы.

    ОПРЕДЕЛЕНИЕ 5 Если времена возвращения trj не одинаковы /не повторяются/, то такое возвратное состояние Zj называется опериодичным.

    СВОЙСТВО 1: Если марковская цепь однородна, неприводима и апериодична, то для каждого состояния цепи существуют некоторые предельные вероятности состояний Pj, которые называются равновесными, и которые не зависят от времени и от начальных условий, т.е.

    Вероятностный переходный процесс как-бы закончился и наступил равновесный, не зависящий от Pj (0).

    СВОЙСТВО 2: Если все состояния однородной марковской цепи возвратны, а средние времена trj конечны, то для такой марковской цепи имеет место стационарное распределение вероятностных состояний:

    - сумма произведений другого состояния на вероятность перехода из i-го состояния в j-тое

    Равновесие вероятности состояний марковской цепи и вероятности переходов позволяют вычислить важные характеристики однородного марковского процесса:

    - время возвращения в j-тое состояние

    - среднее время пребывания в каждом j-ом состоянии

    Но эти времена задаются с учетом шага испытаний .

    Текущее состояние процесса на марковском графе отображается точкой. На каждом шаге мы точку снимаем и разрываем переход. Среднее время возврата в каждое состояние: выбирается как минимальный шаг, при котором возможен физический переход.

    Для определения среднего времени воспользуемся некоторыми фрагментами цепи, которые подвергались испытаниям на каждом шаге.

    Среднее время будет видимо определяться вероятностью переходов в то же самое состояние Pjj, которая должна согласовываться с вероятностью выхода / I- Pjj /.

    Среднее время пребывания в j-том состоянии может определить как геометрическое расределение вероятности возвращения в то же состояние на k шагах испытаний. В этом случае вероятность того, что в Zj будем находить k шагов будет:

    Это геометрическое дискретное распределение характеризует результаты испытаний с /k-I/ неуспехом и одним успехом, и наоборот.

    Для среднего времени при геометрическом распределении:

    - задает среднее время для k.

    Геометрическое распределение является простейшим распределением без последствия. Именно оно характеризует процесс обследования заявок в СМО, поскольку Zj мы можем рассмотреть как состояние обследования j-той заявки. Тогда среднее время ее обследования распределяется геометрически.

    Если выходной поток СМО имеет более сложное распределение чем экспоненциальное или геометрическое, а для описания процессов СМО используется однородная марковская цепь, то в этом случае имеет место некоторое логическое несоответствие, и такая модель называется полумарковской. Такая модель называется с вложенным марковским процессом.

    Если же выходной поток простейший, то можно назвать эту модель марковской и использовать однородные цепи для анализа процесса.




    Вы можете
    Скачать
    эту методичку

    © Copyright 2006-2017. Все права защищены. Сайт бесплатно.